Plan for CD-1 review and further including FEE update Takao Sakaguchi ## Topics to be discussed - Overview of overall schedule - Schedule of prototype development - Schedule of mass production - Status and issue of FEE - DAM/EBDC part will be presented by Jin - How to test FEE and DAM/EBDC - Test stand development idea - Mass test scheme for production - Costs review for CD-1 review - Prototype costs - Mass production costs ## Schedules and funding news - All the development should be finished by Jul 2018 - Pre-prototype, prototype v1 and pre-production prototype - Use of OPC fund is just approved - Enough funding for all the prototype development - \$90K for FEE, \$40K for DAM/EBDC ## Status of FEE (I) Joe produced initial board layout with eight SAMPAs - It fits to the support structure at the endcap - Board width should be <14.8cm - Board length should be <10cm - Board spacing should be <2cm ## Status of FEE (II) - Decided produceing a pre-prototype board for FEE - Just 2 SAMPAs with a Xilinx Attira-7 chip (basic testing purpose) - Time scale: ~3d (design) + 4w (layout) + 2w (fab) + 1w (parts mount) - Work on real prototype in parallel to the pre-prototype production - Expect ~2-4 SAMPA chips (MPW2) from STAR (Tonko) - Tonko will inform us later how many chips exactly he can provide us - These chips are for pre-prototype board - Also asking Chuck Britton of ORNL and David Silvermyr for more - ~200 SAMPA chips (still MPW2) are expected in May - Tonko will purchase 400 chips for iTPC. However, he said that he won't use more than 200. Another 200 will be for us - There is not issue for SAMPA chip acquisition for mass production - Maro Bregant of Universidade de Sao Paulo assured this #### Radiation - Initial radiation estimate is estimated - Eric's analysis result of RadFET monitoring during Run-14 Au+Au 200GeV run - Delivered luminosity to PHENIX was 23 nb⁻¹ - Measured result - 100Gy at r=3.5cm, 50Gy at r=6.5cm, 15Gy at r=16cm - Simple 1/r² dependence - Total Dose at TPC (@100KHz): 10μGy/sec at 16cm - Highest radiation possible at TPC - Neutron flux is being estimated by Eric ## Current pad design - Three segments in radial direction, each divided into 16 - 12 sectors in phi direction, each divided into multiple of 16 - Each cell in the right figure corresponds to 16 pads in phi - Zigzag-type pad configuration 5 FEEs for 20<r<40cm, 8 for 40<r<60cm, 12 for 60<r<78cm, for each 1/12 of full azimuth Each cell = 16pads in phi ## Issue on FEE development Common mode noise issue (ALICE found) - Common Mode removal is what the on-board DSP for the SAMPA chip is designed to do. - But, this is within a chip, i.e. 32 ch - The technique: - Find a large number of "empty channels". - See if they all dip below zero together. - Correct everyone up by the amount of the dip. - ALICE ended up with 5MHZ sampling instead of 10MHz in order to fit the bandwidth of GBTx - SAMPA itself can drain all the data ## Data rate (two cases) - Data Rate with zero-suppression - 1.42Gbps/board for 30<r<40cm - 1.45Gbps/board for 40<r<60cm - 0.77Gbps/board for 60<r<80cm - $\rightarrow 28$ Gbps/(1/12 full azimuth) - With no zero-suppression in SAMPA (common-mode noise case) - 26Gbps/board (fixed) - No way to send this amount of data through one optical link? - FPGA on FEE has to do job - Need to take care of 11*8 e-links from 8 SAMPAs - Average out the charges in pads that have negative values (> 50 pads?) - Shift other channels by that amount - No header is included in the estimate above - 40% increase (max) of the data volume for zero-suppression mode - Less than 1% increase for non zero-suppression mode ## Test stand development - By the end of June (July?), we should have a set of prototype cards - 25 prototype v1 FEEs, 1 FELIX board (already here), 1 EBDC - We need a test stand to do several testing including chain test - Additional peripheral for test stand - Three pulsers and pulse distribution boards - Corresponding to three radial sectors in addition to above - We have to test 750 FEE cards and 30 DAM boards in the end - We have to do this test in 40-60 days (3-4 months). I assume working efficiency is ~50%. - Assuming 25 FEEs are tested at one test cycle, we need 30 test cycles - I propose to make two sets of the board testing setup just in case #### Test stand scheme ## Costs review for FEE (prototype) Total: \$60K for v1, and \$30K for pre-production | | AMEDICAL SECTION AND ADDRESS OF THE PROPERTY O | | 1 | | ı | | | |-----------|--|--|------------------|---------|---|------------|-------------| | 1.2.6.1 | PMTPCFEE®rototype®√1 | | | | | i | \$57,33 | | 1.2.6.1.3 | ************************************** | | | | | \$16,500 | | | | , , , , , , , , , , , , , , , , , , , | SAMPA©thip | CERN | \$9,000 | 200@thips@~\$45/chi | | s@nfo)@for@ | | | | FPGAIArtix-7) | Xilinx | | Joe's\(\text{lexperience} \) 25\(\text{loords} \) | | , | | | | Optical Itransmitter/receiver | Avago | | Joe's experience 25 boards) | | | | | | Resistor/capacitor/regulator | Digikey | \$2,500 | Joe's experience 25 boards) | | | | | | Card Connectors | Samtec | \$1,250 | Joe's experience 25 boards) | | | | 1.2.6.1.4 | mm abricate PC EE prototype v1 boards | | | | | \$7,500 | | | | | Initial ® ee | | \$5,000 | Joe's experience | | | | | | Board dabrication | | \$2,500 | Joe's Experience 125 | 5🗈 boards) | | | 1.2.6.1.5 | ************************************** | | | | | \$5,100 | | | | | MegaPac (Chassis (15V) | Vicor West Coast | \$5,100 | Steve's Quote Alan, 22016), 21 Amodule | | lule | | 1.2.6.1.6 | TTTTTDevelop@PCFEE@eststand | | | | | \$26,980 | | | | | Chain dest do oard dabrication | BNL | \$2,000 | | | | | | | Resistor/capacitor/regulator | Digikey | \$100 | | | | | | | Optical transmitter/receiver | Avago | \$50 | | | | | | | SAMPA®thip | CERN | \$180 | Two@thips@with@spare@of@2) | | | | | | FPGA (Artix-7) | Xilinx | \$100 | Manufacturer Quote | | | | | | Card Connectors | Samtec | \$50 | | | | | | | Pulse Idistributor Iboard Initial Ifee | BNL | \$2,000 | | | | | | | Pulsedistributor | BNL | \$7,500 | guess 25 Input selectors) | | | ## Costs review for FEE (mass prod.) Total: \$800K (with power supply and cable), including 25% spare | 1.2.6.3 | ™ PC FEE Production | | | | | | \$782,600 | |-----------|---------------------------|------------------------------|------------------|-----------|---|----------------------------|-----------| | | mmProcure TPC TEE? | | | | | | | | 1.2.6.3.1 | components | | | | | \$603,000 | | | | | SAMPA®thip | CERN | \$378,000 | 4800∄38600 | @thips@~\$45/ | chip) | | | | FPGAAArtix-7) | Xilinx | \$75,000 | 1001 1001 2 | 25%ßpare | | | | | Optical ransmitter/receiver | Avago | \$37,500 | 502*25002+22 | 5% ß pare | | | | | Resistor/capacitor/regulator | Digikey | \$75,000 | 1001 10 | 2 5% 3 spare | | | | | Card Connectors | Samtec | \$37,500 | 502*25002+22 | 5% ß pare | | | | TTTTProcure TPC TFE ELV T | | | | | | | | 1.2.6.3.2 | power s upplies | | | | | \$62,100 | | | | | 10AWGI6T00UPICableI | Belden | \$6,000 | \$1.5/ft, 4 000ft. | | | | | | MegaPac hassis 5V) | Vicor West Coast | \$56,100 | 51002*2102-213spare | | | | | abricate and assemble? | | | | | | | | 1.2.6.3.3 | all@PCFeeboards | | | | | \$117,500 | | | | | Initial 1 ee | | \$5,000 | | | | | | | Board⊡fabrication | | \$75,000 | 1001 6001 | 25%Bpare | | | | | Parts mounting | | \$37,500 | 501 500 12 | 5%Bpare | | ## Rough cost estimate (for production) - Direct M&S cost for 154K channels is 1.3M FY17\$ - Development cost is not included. Spare (20-25%) is included - Was 1.1M for 100K channel without spare included | Item | # of items | \$ per item | \$ all | | |---------------|------------|-------------|--------|--| | SAMPA Chips | 8400 | \$45 | \$380K | | | FEE cards | 750 | \$450 | \$340K | | | DAM | 30 | \$8000 | \$240K | | | Cables/fibers | | | \$100K | | | Power Supply | 11 | \$5100 | \$60K | | | EBDC | 30 | \$6000 | \$180K | | | Total | | | \$1.3M | | c.f. STAR iFEE is \$150/card (64 ch., copper cable readout) #### STAR iFEE board - We have one 64-channel board in hand - Data is readable through a USB connector. - TS is going to test it next two weeks. - One more board can be obtained from Tonko - These boards can be used for magnet testing in June ## End We are making good progress ## Backup ## FEE side update - 256 channels per card (eight SAMPAs) is the fixed number - From the previous pad layout, the minimum spacing of the FEE cards will be ~2cm (at r=20cm) - This is acceptable from the point of view of engineering - Width of FFF card will be ~16-18cm. - The most outer radial segment will be 60-78cm - Cable from pad to SAMPA should be less than 5 inches (STAR's experience) - GBT or other protocol? - If we put FPGA on the FEE, the optical doesn't need to be GBT - FPGA would have SEU. STAR's experience tells one serious SEU event happens every 10 minutes. We should start engineering for FEE #### Overview of readout chain ## FEE (Frontend) - Each FEE takes care of 256 inputs. 100K ch = 400 FEEs - Use of SAMPA chips (SAMPA is "shaper + ADC + DSP") - SAMPA accepts 32 inputs → 8 SAMPAs on a board (4 SAMPAs on each side) - FPGA receives and distributes slow control and timing/clock signal - FPGA also collects digitized data from SAMPAs (e-link) and format them for optical transmission ## We rely on SAMPA - SAMPA = CSA + Shaper + ADC + DSP - 32 channels input - Prototype chip became available - Final version SAMPA will be available in late 2018 Figure 6.4: Schematic of the SAMPA ASIC for the GEM TPC readout, showing the main building blocks. #### A bit more differential rates - Radius dependent occupancy and η coverage change are taken into account - 2 Gbps/board for Minbias, 7 Gbps/board for 0-5% cent Au+Au, @ R= 30cm - One board = 256 channels = one optical fiber from FEE to DAM - C.f. GBT rate: 4.8 Gbps (line rate), 3.2 Gbps (payload rate) ## CRU internal logic block connections ## Cost estimate (for production) - Direct M&S cost for 100K channels is 1.1M FY16\$ - Cost for development is not included. - We assumed ~20-30% of this as M&S cost for development | Item | # of items | \$ per item | \$ all | |---------------|------------|-------------|--------| | SAMPA Chips | 3200 | \$44 | \$140K | | FEE cards | 400 | \$700 | \$280K | | DAM | 50 | \$6000 | \$300K | | Cables/fibers | | | \$100K | | Power Supply | 8 | \$12000 | \$100K | | EBDC | 50 | \$3000 | \$150K | | Total | | | \$1.1M | c.f. STAR iFEE is \$150/card (64 ch., copper cable readout) #### STAR's iFEE - Good start to think of geometry our front end cards - To be attached to pad planes - Two SAMPA chips on one side of the card - Geometry of the card is 62mm*162mm - 64 channels/card (32 ch/SAMPA) - One SAMPA chip is 15*15mm², which is much smaller than I thought - Input connector is as wide as ~57mm and 10mm in height - Takes care of 64 channels. There is one for 160ch also. - A large heatsink will be attached to the side of the board where no chip is mounted - Heatsink is 20mm in height - Can be shortened to ~10mm 162mm Input connector (64 channels) ## On recording data at 5GB/sec From Chris Pinkenburg - 20 week run (12,096,000 sec) - 5GB/sec → 60.5 PB - 75% duty factor → 40PB - 40PB is only a factor of 4 more than STAR took in 2014 using LTO5 tapes/tape drives, should not be a problem in 2022. - Current LTO7 (released Dec 2015) store 4x data of LTO5 @ 2x write speed #### Data rate calculation - Raw data (100% duty factor is assumed) - Sampling rate in z-direction: 10MHz (= 100nsec) - Pulse peaking time is 160nsec (fixed from SAMPA's specification), which leads to ~350nsec for whole pulse shape. - More than 4 samples in timing (z) direction is necessary. We decided on taking 5 samples including pre-signal - One cluster will be spread over 3 pads in r- ϕ plane - Coming from the characteristics of the Ne2K (Ne CF₄ iC₄H₁₀: 95% 3% 2%) gas - We measure 30 clusters for one track - Each sample is 10 bits: 30 clusters * 15 * 10 bits = 4.5 Kbits/track - 800 tracks per event: 4.5Kbits/track * 800 = 3.6 Mbits/event - At 100 KHz: 3.6 Mbits/event * 100 KHz = 360 Gbits/s - Raw → Clustered data: 1 cluster → 8 bytes (following the STAR's case) - 15 * 10 bits (raw) \rightarrow 8 bytes (clustered) - 360 Gbits/s (raw) → ~20Gbytes/s (clustered) @ 100KHz